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Abstract. A metric is obtained which in the vicinity of the source reduces to the metric 
describing the field of a radiating charged particle and which in the absence of the source 
reduces to the metric of the well known Einstein static universe. 

1. Introduction 

The generalisation of DeSitter’s and Friedmann’s cosmological solutions with a point 
mass is well known in the literature (McVittie 1933, Tolman 1934). Vaidya and Shah 
(1957) have discussed a radiating mass particle in an expanding universe, while Patel 
and Shukla (1974) have discussed a radiating charged particle in an expanding universe. 
However, a solution describing a radiating charged particle in Einstein’s universe has 
not yet been found. The purpose of this paper is to fill this gap. 

Einstein’s model of the universe is the simplest geometrical model for an isotropic 
and homogeneous universe which is static. The geometry of this universe is described 
by the metric 

( x d x + y d y + ~ d z ) ~  
d s 2 =  dt2 -dX2 -dy2-dz - 

R 2  - ( x 2 +  y 2 + z 2 )  

where R is a constant. 
We carry out the following transformation from (x, y, z ,  t )  to the coordinates 

(r, a, P ,  U): 
x = R sin(r/R) sin cy cos p, 
z = R sin(r/R) cos cy, 

Under (1.2) Einstein’s metric (1.1) transforms to 

y = R sin(r/R) sin a sin p, 
u = t - r .  (1.2) 

d s 2 =  2 du d r + d u 2 - R 2  sin2(r/R)(da2+sin2a dp’). (1 .3)  
Bonnor and Vaidya (1970) have obtained a solution describing the field of a 

(1.4) 
The functions m ( u )  and e ( u )  are respectively the mass and the charge of the particle. 

Here it should be noted that this metric was given without physical interpretation by 
Plebanski and Stachel (1967). If m = e  = 0 the metric (1.4) becomes flat. Thus the 
metric (1.4) is described in the flat background. It would be interesting to obtain the 
metric (1.4) in the cosmological background of Einstein’s static universe rather than in 

radiating charged particle. The metric of their solution can be expressed as 

d s 2 = 2  du d r + ( l  -2m(u) / r+4m2(u) / r2 )  du2-r2(da2+sin2cy dp2) .  
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the standard Minkowskian background, and the object of the present investigation is to 
do just that. 

We take the space surrounding the radiating charged particle to be occupied by a 
spherically symmetric matter distribution of nonzero density p and pressure p .  The field 
equations are 

R,k-:g,kR =-8 . i r [ (p+p)VlVk-pg,k+f f5 ,5k+E~kl+Aglk  ( 1 . 5 ~ )  

E l k  = -g"F,/Fk, + $glkFlmF/, (1.56) 

F l k  = Al,k - Ak,, (1 S c )  

F l k , k  = J '  (1.5d) 

where Rlk is the Ricci tensor, A is the cosmological constant, m is the radiation density, 
A, and FIk are the electromagnetic vector potential and field tensor, VI is the flow vector 
of a perfect fluid, and 

gzkV1Vk = 1, g'k5kk = 0 (1.5e) 

is the null vector satisfying 

grk  being the metric tensor. 
In this paper we put forward a new exact solution of the above field equations. 

2. The Ricci tensor 

We first take the Einstein universe given by (1.3) as the background universe. Consider 
the following metric with signature (-, -, -, +): 

(2.1) 

where L is a function of r and U .  Here the coordinates r, a, p and U are taken as xl, x2,  
x 3  and x4 respectively. The explicit expressions for the nonzero components of the 
Ricci tensor Rlk for the metric (2.1) are 

d s 2 = 2  du d r + 2 L  d u 2 - R 2 s i n 2 ( r / R ) ( d a 2 + s i n 2 a  dp2) 

R l l  = -2L2/R2-(2Lu/R) cot(r/R) 

R14 = -2L,, - (4L,/R cot(r/R) 

R22/M2 = R33/M2 sin2a 

= -2L/R - (11 R 2 ,  cosec2(r/ R )  + (2L/R 2 ,  cot2(r/R) + (2LJR) cot(r/ R )  

R44= -(2Lu/R) cot(r/R)-2LLrr-(4LL,/R) cot(r/R). (2.2) 
Here and in what follows a suffix denotes a partial derivative, e.g. L, = dL/dr, etc. 

3. The electromagnetic field 

For the present problem we take the four-potential A ,  to be 

A ,  = (e /R)  cot(r/R)6f (3.1) 
where e is an arbitrary function of U. From the Maxwell equations ( 1 . 5 ~ )  and (1.5d) we 
find that J' is the only nonzero component of the current vector J ' .  It is given by 

J' = (eU/R2) cosec2(r/R). (3.2) 
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It is clear from (3.2) that the current is radial and null, i.e. gikJ’Jk = 0. The resulting 
nonzero components of Eik are given by 

E22 - E33 = E44 - = = ( 7) e2 cosec4(i) .  
R 2  sin*(r/R)- R 2  sin2a sin2(r/R) 2L 2R 

4. The solution of the field equations 

For the metric (2.1) we can take the vectors 5, and V, as 

5, = ( O , O ,  0, 1) 

V, = (1/2n, 0, 0, L/2n + n )  

(3.3) 

(4.1) 

where n is a parameter to be determined with the help of the results (2.2), (3.3) and 
(4.1). The field equation ( 1 . 5 ~ )  then leads to 

l / n 2  = 2 ~ .  (4.2) 

(1 -2L) cosec2(r/R)/R2-8.ire2 cosec4(r/R)/R4+Lrr = 0. (4.3) 

Here we have assumed that 2L is positive. 

The differential equation (4.3) can be easily integrated, and the solution expressed 

(4.4) 

Using (4.4) we can find explicit expressions for pressure, density and radiation 

in the form 

2L = 1 - (2m/R) cot(r/R) +(4re2/R4)[cot2(r/R) - 11 

where m is an arbitrary function of U. 

density: 

8 ~ p  = A-2L/R2 (4.5) 

8n-p = -A+6L/R2 (4.6) 

(4.7) 

From the results (4.5) and (4.6) it is clear that 2 4 r p  + 877p = 2A, i.e. 3 p  + p  = const. 
The metric of our solution can be expressed in the final form as 

ds2 = 2 du dr -  R 2  sin2(r/R)(da2+sin2a dp2)  

du2  (4.8) 

When m = e = 0 the metric (4.8) reduces to the metric (1.3) of Einstein’s universe. 
When R tends to infinity then (4.8) reduces to the Bonnor and Vaidya (1970) metric 
(1.4) describing the field of a radiating charged particle. Thus we have found a metric 
which in the vicinity of the source reduces to the metric describing the field of a radiating 
charged particle and which in the absence of the source reduces to the metric of 
Einstein’s universe. 

When e = 0 the metric (4.8) becomes the radiating-star metric of Vaidya (1953) in 
the background of Einstein’s universe. Also when e and m are constants the metric 
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(4.8) reduces to the Nordstrom metric in the cosmological background of Einstein’s 
universe. 

Here it should be noted that our uncharged non-radiating metric is closely related to 
the solution obtained by Whittaker (1968). He assumed the equation of state p + 3 p  = 
const. 

It is well known that the Einstein universe given by the metric (1.3) is conformally 
flat. Therefore one may be tempted to believe that our results are conformally 
equivalent to those of Bonnor and Vaidya. But this is not true. We have verified that 
our metric (4.8) is not conformal to the metric (1.4) of Bonnor and Vaidya (1970). 
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